Lyapunov-type inequality for a higher order dynamic equation on time scales
نویسندگان
چکیده
منابع مشابه
Lyapunov-type inequality for a higher order dynamic equation on time scales
The purpose of this work is to establish a Lyapunov-type inequality for the following dynamic equation [Formula: see text]on some time scale T under the anti-periodic boundary conditions [Formula: see text], where [Formula: see text] for [Formula: see text] and [Formula: see text], [Formula: see text] with [Formula: see text] and [Formula: see text], p is the quotient of two odd positive intege...
متن کاملHigher Order Dynamic Inequalities on Time Scales
In this paper, we will prove some new dynamic inequalities of higher orders on time scales. The results contain some continuous and discrete inequalities as special cases. We will prove the results by making use of Hölder’s inequality and Taylor monomials on time scales. Mathematics subject classification (2010): 26A15, 26D10, 26D15, 39A13, 34A40.
متن کاملFirst order linear fuzzy dynamic equations on time scales
In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولHigher-Order Dynamic Delay Differential Equations on Time Scales
Let T be a time scale. We study the existence of positive solutions for the higher-order p-Laplacian dynamic delay differential equations on time scales. By using the fixed-point index theory, the existence of positive solution and many positive solutions for nonlinear four-point singular boundary value problem with p-Laplacian operator are obtained. Mathematics Subject Classification: 34B16, 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SpringerPlus
سال: 2016
ISSN: 2193-1801
DOI: 10.1186/s40064-016-3139-8